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Expressions are derived for the dimensionless heat- and mass-transfer
coefficients for bodies of simple shape and the calculated relations
are compared with the existing experimental data. The limits of
applicability of the resulis are considered.

A number of theoretical and experimental papers
have appeared in recent years on the effect of elastic

Pmin

Fig. 1. Acoustic flows near cylinder (a)
and in plane layer (b).

waves propagated in a medium on heat- and mass-
transfer processes. Most authors [1-3] relate the ac-
celeration of these processes in high-intensity acoustic
fields to the appearance near the sound-irradiated
body of acoustic flows, formed as a result of interac-
tion of the sound wave with the interface between the
medium and the solid body. However, the (at first
glance) contradictory experimental results of various
authors do not allow the effectiveness of the acoustic
method of acceleration of these processes to be eval-
uated. It is sufficient to point out that, according to the
experimental data in [2,4], the processes are inten~
sified with an increase in the sound frequency, while,
from the results in [3,5], it is evident that the reverse
dependence of heat and mass transfer upon frequency
is observed under other conditions.

In this paper, we have attempted to give a general
method for calculating the dimensionless heat- and
mass-transfer coefficients, and expressions are de-
rived for the Nusselt number for bodies of simple
shape: a sphere and a plane. First, let us consider
the case of heat transfer from a sphere (R < A), whose
surface temperature is held constant and which is sub-
jected to a plane sound wave. In the coordinate system

associated with the sphere (see Fig. 1a), the incident
wave is given as Viy.{—Vysin 8 cos wt, Vicos 6 cos wt).
To determine the heat-transfer coefficient

Nt ! (6<T>) : )
y=0

T T,—T.\ oy

we must solve the heat-transfer equation
() <T>=DAT (2)

with the boundary conditions
T=T,wheny=0 and T =T, when y - . (3)

To determine u in Eq. (2), we use the equation of
motion with allowance for convective heat transfer
from the heated body [6]:

p
=——T+yvzu—gﬁ(T—~To). 4)

The boundary conditions for (4) have the form
u=0 when y=0.

Since the plane sound wave creates in the vicinity
of the sphere a flow that is constant with respect to
time (the configuration of the streamlines can be seen
in Fig. 1a), the motion velocity of the medium and the
pressure can be represented as a sum of constant and
pulsating terms:

u=u-+V, P=P +P,. (5)
The velocity and pressure pulsations cause the density

of the medium and the temperature to vary with respect
to time; therefore,

p=py+p, T=(T)+Ty, (6)

and the relationship between the variable velocity com-
ponent and the temperature pulsation beyond the limits
of the boundary layer (y > 6 = (2y/w)1/2) can be written
[7] as

T, =

= Real [f(‘a(ai) Vie + ‘”ayT) V,y)J. (1)

We use the method described in [8] to solve the flow
equation (4). Then, omitting the intermediate trans-
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formations, which are described in detail in [8], we
can show that {4) becomes

(V) vy —y Vi, =

P
=— Y0 gp((T)—

0

T)—<(Vi)V1), (8)

where V; {for uy < ¢) can be found by solving the sys-
tem of equations of motion, continuity, and state in the
first (acoustic) approximation,

Vi ¥P Ly,
ot 0o
I4]
6"1— +- py V1 =0,
P1=plc s (9)

under the boundary conditions y = 0 and Vix = Viy = 0.
The solution of system (9) has the form [9]

Vi, =
=V, sind [cosmt~exp<—-6—) cos(mt——j—)],
Y Y
Viy =—Vycos8 {_y_ coswi? -+
dy V‘“d
X | COS m i) X
L g (
8
xcosmt—————m]}. (10)
4y

This solution is valid when

_‘éi.>> ] and Vo 51, 1)
.

Equation {(8) is the equation of motion of the medium
under the influence of two forces: a force of acoustic
origin {pe{V,V)V,) andalifting force pof g{{T) — Ty due
to the presence of a temperature difference. Suchflows
are called thermoacoustic [1]. Since finding the veloc-
ity and configuration of such flows involves great theo-
retical difficulties, we shall consider the action of
high-intensity sound when

gBKT>—T) & {(Viv)Vy). (12)
Then, (8) takes the form

P
(7)) 1y — YA 1y = — LR (Ve V). (13)
Po
This equation describes the behavior of the acoustic
flows in the absence of natural convection(Fig. 1a) and
its solution when (4 V)u; < vAug, which is equivalent to

0 . (14)
It is known {9] that
3. v
hos =3 =R s5in 28 X

X{exp(—— g)[%sm—g———exp( g)] +1}. (15)
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Then, the tangential component of the flow velocity
outside of the boundary layer can be written as

3 Vi
tyy = 5 mﬁ sin 26. (16)

Here it must be noted that limitation (12) on the ampli-
tude of the fluctuating velocity is stronger than (11).
Therefore, assuming that for a sphere [9]

2

v
Vip) V=, @)

on the basis of (12) and (14),
can write

using (16) and (17), we

BeRT, —T N L VoL IyR¥ Y. (18)

If we substitute (16) and (15) into (12) and average
with respect to time, we obtain the heat-transfer
equation as

W KT >+ (Vum Ty > =D V(T ). {19)

We specify the boundary conditions for this equation

on the surface dy + 8. If 6 < d, the temperature at the
surface dg+ 6 will equal the temperature of the sphere,
since the time in which the temperature of the surface
dy + 6 becomes equal to Ty (T = &/D) is considerablyless
than the characteristic time of the process. There-
fore, when

R 32
_—>3’ (20)

ty
it does not matter where the boundary conditions are
assigned: at y = 0 or y =6. Thus, the problem of find-

ing the temperature distribution of the medium reduces
to solving Eq. (19) under the boundary conditions

T==T,wheny= 8 and T =T, when y - . (21)

We solve (19) in two steps. First, let us consider the
case in which the temperature of the medium is de-
termined only by the velocity of the constant (acoustic)
flow, i.e., (WV)(T) » {(V{V)Ty. Then, (18) becomes

(v)<(T)=DAT). (22)

With the standard Mises substitution [10]

Vo = 9% (R + y)sin@]~*

V,= 2% (R4 ypsinor (23)
08 :
it reduces to

s ;- 2
(ML) = DR3u0xsin26 g._ﬂ
@

2

= (24)

a0
If we substitute (16) into (24) and introduce the new
variable

3

(1:—-1—

2 )
DR? —Vwi 5 sin 20sin?0d 6 =

3DRV,
4w

sin*@ + B, (25)
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where B, is the constant of integration, we arrive at

0Ty o T)
da op?

) (26)

with the boundary conditions
T=T, when ¢ >, T=T, when =0,
a—a,=DB, when 6-»0. @27

The solution of Eq. (26) has the form

(T =
y/2 Va—a,
- 1/2; (Ta—T,) exp(—29dz + B,. (28)
V]
Then
Ty _
3y
__ I (Ta—Ty . P2 ay 9
Ve Ve—a, GXP{ 4((1—(10)] ay (29)

1
From (23), ¢ = 5 Vo rsinbdy; therefore, finally (r =
=y -+ R)

<6<T>) =4V——3—V0(T0—Ton) (30)
0y Jy=o aVaRVDe

Since 2R is the characteristic dimension of the sphere,
if we substitute (30) into (1) we obtain

N =2 (31)

¢ VoD
Now let us consider the second case, in which the
first term on the left-hand side of Eq. (19) is small in
comparison with the second, i.e., the temperature is
determined chiefly by the pulsating component of the
flow velocity. In this case, (19) is transformed to

(Viv)Ty) =Dv2(T>. (32)

If the sphere is heated uniformly and Pe = ugl /D >
> 1, then 9(T)/0x < 9(T)/0y, since the temperature
varies greatest radially. Therefore, (32) can be writ-
ten as

F<T) (33)

((Vaw)T1> =D a9

Substituting (10) into (7), we obtain

. dsin (m t— i—)
Ty~ sinot 4 x
! ® V2Re
x Vycos 0 KT (34)
0y
and
oTy aT,

<V1;,—(E—+V1x 7>=
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8 Visint0 9T

=— —im % (35)
Hence, (33) becomes
*(Ty | Vidsin®® a<T)
D o 1o 12 3y =0. (36)

If we integrate (86), we obtain
(T =(Ty—Tw)exp(—xnyVt+Ta,  (37)

where % = V3 sin? 0/4wDR*. Then

<6<T> ) _ Vi8sin?8(Ty—Tw) (38)
0 Jy=o 40 DR® ’
and, substituting (88) into (1), we obtain
._ 8Vs
Nua = m . (39)

The over-all heat-transfer coefficient, which is deter-
mined by the effect of the acoustic flows Nuéz and pul-
sations Nu;, is equal to the sum of these components,

Nu, = Nu + Nu, (40)

since the heat-transfer equation is linear in (T).
Let us estimate the contribution to the heat-trans-
fer process made by each of these terms:

Nu, 96R}eD 6.
oo RVoD B?R V%' (41)
]

Nu, 8V,

In the derivation of the expressions for the heat-
transfer coefficent it was assumed that Vy could be
chosen within the limits defined by condition (18), while
the radius of the sphere was bounded by the reflections

a<<1e<%, 42)

and, in addition, the requirement A/R < 1 had to be
met, which can be written as

Vo

o > R 43)
and which imposes a limitation on the possible lower-
ing of the working frequency. Considering (43), there-
fore, it is obvious that under the chosen conditions
@ > 1, i.e., the heat-transfer process in an acoustic
field is determined chiefly by the acoustic flows and
is independent of the pulsation term, although it is
natural that, since the acoustic-flow velocity (16) is
proportional to the kinetic energy of the sound wave,
heat transfer is increased when the amplitude of the
fluctuating velocity (31) is increased.

It should be noted that formula (31) is valid not
only for a sphere but also for a cylinder, since the
expressions for flow velocity near a sphere and near
a cylinder (outside the boundary layer) are identical
[11] and are written in the form of (16). This allows
us to use expression (31) to compare the calculated
values of the dimensionless heat-transfer coefficient
with the experimental data in [1].
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Heat transfer from a horizontal cylinder (dg = 18.8
mm) when it was placed at the standing~wave velocity
antinode was studied in [1]. The soundfrequency varied
from 1.1 to 6 kHz, and the sound pressure P; = 140~
160 dB. In Fig. 2, curve 1 corresponds to Nug+ Nuy,,
where Nug was calculated according to [1] and Nuj; by
(31), while curve 2 is the experimental relation ob-
tained at 1.5 kHz [1]. Since formula (31) was derived
under assumption (12), then, bearing in mind (17), we
can show that for the temperature potential Ty — T, =
=110° C, for which the experimental data are given,
(31) is valid when P, = 2+10° bars (140 dB). Compari-
son of curves 1 and 2 shows that for sound pressures
cloge to the critical value Pyy, the difference between
the calculated and experimental values can reach 25%,
whereas this difference is substantially reduced when
the sound intensity ig increased.

Figure 2 also shows the frequency dependence of
the dimensionless heat-transfer coefficient (curve 3)
(P = 6,3+ 10%bars), which was plotted from (31). The
experimental value (for P;= 6" 10% bars) from [L]are
shown by points. The graphs show that formula (31)

/ 2 3 4 5 ;
.
Nup +Nug
24
b L.
3\ &’;:::
‘7 frc?
16 e e
e ———
-
—/”’1///‘42
plem e » —
/ By 2 3 4 5 8107

Fig. 2. Heat-transfer coefficient versus frequency
and intensity for a cylinder.

explains satisfactorily the variation of Nu, as a func-
tion of the parameters of the sound field. It must be
noted that (31) differs from the formula for mass
transfer from a sphere in a sound field {2] only by a
coefficient,

1%
VoD *

Since the mass-transfer equation is similar to the
heat-transfer equation, and, in particular, when the
pulsation term is negligible it has the form

Nu, = 1.07 (44)

v)C=DAC, (45)
which is similar to Eq. (22), then solution of the mass-
transfer problem reduces formally to solution of a sys-
tem of equations consisting of (45) and general equa-
tions of motion. In particular, the flow equation can

be taken in the form of (13). Therefore, the coeffi~
cient of mass transfer from a spherein a sound field
will be determined by the same expression as for

heat transfer, i.e,, formula (31). Expression (44),
however, which was given in [2], was derived under
the assumption that the sphere was placed in the field
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of an airstream whose velocity is determined by (16),
i.e., the authors actually ignored the characteristics
of the boundary layer of the acoustic flows, as a re-
sult of which a different value of the coefficient was
obtained. These acoustic-flow boundary-layer charac-
eristics are taken into account in formula (31).

F
+f

’ \_//

~f

2 3 %
Fig. 3. Distribution of a force causing a flow
near a surface.

Now let us consider the case of mass transfer from
the walls of a channel within which a standing sound
wave has been set up. As in the case of heat transfer,
we shall assume that the mass transfer is chiefly af-
fected by the acoustic flows, which in this case are of
the Rayleigh type and whose configuration is shown in
Fig. 1b. The complexity of the solution of this problem
lies in the fact that for Rayleigh flows the character-
istic dimension of motion is R, and, therefore, when
Re = wyR/vy » 1, Eq. (13) is pot linearized. In the area
of the viscous sublayer, however, the equation can be
linearized, since uydy/y < 1. Then the equation of mo-
tion takes the form

(46)

P
Vo +Vim)V,

0o

vA gy =—

and corresponds to the equation of the acoustic flows

caused by the force F = p(V;V)V;. The thickness &
of the viscous sublayer can be defined as the distance

at which F = 0. As is apparent from Fig. 3, this con-
dition is met when y = 49.

Nug +N,
NU,

/
/

call

130 140 150 P

Fig. 4. Comparison of theoretical

and experimental values of mass-

transfer coefficient as a function

of sound pressure (P, dB) for a
plane at f = 286 Hz.

The solution of (46) with the boundary conditions
ug = 0 at y = 0 has the form
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2
u[,x=ﬁ sin 2kx {[3sin %+cos <4

4c 8
I y y 3
+—exp|—-%|lexp | —=|——}4
2 p( a)] p( a) 2>
+ Biy® + B,y,
Vok 6
oy = —5- cos 2kx %
in L _gc0s YL y
x{[Qsm s 4cos 5 7 eXP (—T)]X
X exp (——%)——
3y, 17 dB, ¢  dB, y*
—— =i+ - - {47
2 6+ 4} de 3 + de 2 “n

The constants of integration B; and B; are determined
from the condition that when y = 49, ugx and ugy must
equal the velocity components at infinity. The latter
can be found experimentally. Among other things, it
is shown in [12] that for 6 <y < R

Ue = 2.7:10~% V2 sin 2kx. (48)

Then By = 1.5 - 1074(V}/5,) sin 2kx and B, = —5.4 104 x
x (V4/0) sin 2kx.

If we know ug in the range 0 =y = R, we can solve
(45) with the boundary conditions

C=C,when y=0, C=C, when y =R. (49)
For this, we use the integral relation [13]

d [ aC
LV c—cyudy=—pD (=} .
- j C—Coudy=—D (2] . o)

The left-hand side of this equation can be determined

from the following identity, which is valid for Pr = 1:
-G _u—its (51)
Cc

© CQ Ua

Since for gases Pr = 1, (51) is valid with an accuracy
of 1~ (Pr)l'/‘i, if we substitute (51) into (50) and use
(47) and (48), we obtain

( acC ) _ duk § cos 2kx (C,—C.).  (62)
/ly=g

ay D

Hence, from a formula similar to (1) we find that

o ~ 2 X
Nu, — =kORcos kv (53)
D
The value of Nu, averaged over the length of the
channel is

Nu, = 8.8%0 Lu,, 14 L (54)
ncD 2kL

Since 6 = (27/w)1/2, when L > A/2 the dimension-

less mass-transfer cocfficient increases with an in-
. - s

crease in frequency as vw, which has been observed
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for large bodies [4]. On the other hand, when L <

<« \/2, A/2kL > 1 and Nu, is proportional to 1/V&,
which has been observed in practice [5]. In the inter-
mediate region, the frequency dependence is more
complicated.

The periodic variation of the local values of Nu,
obtained in (53) is in good agreement with the experi-
mental results of [14], where heat transfer in a pipe
under the influence of acoustic vibrations for kL > 1
was studied.

Figure 4 shows the ratio of the dimensionless mass-
transfer coefficients in an acoustic field for forced
convection (Re = 1430) as a function of P, as calculated
by (54) assuming 2kL < 1; Nuy, was calculated accord-
ing to [13] and u,, by (48); the experimental points were
taken from [5], in which the sublimation of naphthalene
(D = 0.6 cm®*/sec) at 285 Hz when the samples (L = 2
cm) were flush with the walls of the column was studied.
As can be seen from Fig. 4, the theory is in good
agreement with the experiment.

NOTATION

u is the velocity of the medium; p is the density of
the medium; P is the pressure in the medium; v is
the kinematic viscosity; g is the acceleration of grav-
ity; B is the isothermal compressibility; cisthe speed
of sound; T is the temperature of the medium; (T) is
the time-averaged temperature of the medium; T; is
the time-varying temperature of the medium; V;(Vix,
V,y) isthe rate of oscillation of the medium; Vyisthe
amplitude of the oscillation rate; pgis the mean density of
the medium; p; is the time-varying density of the medium;
Pyis the meanpressure inthe medium; P;isthevariable
pressureinthe medium; w is the eyclic frequency of the
sound oscillations; uglugx, uoy) is the acoustic flow veloc-
ity; Disthe thermal diffusivity (in diffusion equations, it
is the diffusion coefficient); C is the concentration of
the substance in the medium; T, and C, are, respec-
tively, the temperature and concentration of the sub-
stance at the surface of the hody; Tw and Ce are, re-
spectively, the temperature and concentration of the
substance at a point remote from the surface of the
body; Vi is the oscillation rate of the medium remote
from the surface of the body; u. is the acoustic flow
velocity remote from the surface of the body; A is the
acoustic wavelength; k is the wave number; A is the
displacement amplitude; d; is the diameter of the body;
R is its radius; [ is the characteristic dimension of
the motion; 6 is the thickness of the dynamic boundary
layer; L is the sample length; Nu}, is the Nusselt num-
ber, a function of the acoustic flow; Nu', is the Nusselt
number, a function of the oscillation rate; Nug is the
Nusselt number in free convection; Nup is the Nusselt
number in forced convection; () signifies averaging
with respect to time.
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