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Expressions are derived for the dimensionless heat- and mass-transfer 
coefficients for bodies of simple shape and the calculated relations 
a~e compared with the existing experimental data. The limits of 
applicability of the results are considered. 

A number  of t heo re t i ca l  and expe r imen ta l  papers  
have appeared  in r e c e n t  y e a r s  on the effect  of e las t i c  

a s soc i a t ed  with the sphere  (see Fig.  la ) ,  the incident  
wave is  given as Vl~o(-V0 sin 0 cos cot, V0 cos 0 cos ~t) .  

To d e t e r m i n e  the h e a t - t r a n s f e r  coef f ic ien t  
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Fig.  1. Acous t ic  f lows near  cy l inde r  (a) 

and in plane l a y e r  (b). 

waves  propaga ted  in a med ium on hea t -  and m a s s -  
t r a n s f e r  p r o c e s s e s .  Most authors  [1-.3] r e l a t e  the ac -  
c e l e r a t i on  of these  p r o c e s s e s  in h igh- in tens i ty  acous t i c  
f ie lds  to the appearance  near  the s o u n d - i r r a d i a t e d  
body of acous t ic  f lows,  fo rmed  as a r e s u l t  of i n t e r a c -  
tion of the sound wave with the in t e r f ace  between the 
medium and the sol id  body. However ,  the (at f i r s t  
glance) c o n t r a d i c t o r y  expe r imen ta l  r e s u l t s  of va r ious  
authors  do not al low the e f fec t iveness  of the acous t ic  
method of a c c e l e r a t i o n  of these  p r o c e s s e s  to be eva l -  
uated.  It i s  suff ic ient  to point out that ,  accord ing  to the 
e x p e r i m e n t a l  data in [2,4], the p r o c e s s e s  a r e  inten-  
s i f ied  with an i n c r e a s e  in the sound f requency ,  whi le ,  
f r o m  the r e s u l t s  in [3,5],  i t  is  evident  that the r e v e r s e  
dependence of heat  and m a s s  t r a n s f e r  upon f requency  
is  o b s e r v e d  under o ther  condi t ions.  

In this paper ,  we have a t tempted  to give a gene ra l  
method for ca lcula t ing  the d imens ion l e s s  heat -  and 
m a s s - t r a n s f e r  coef f ic ien ts ,  and e x p r e s s i o n s  a r e  de-  
r i v e d  for  the Nusse l t  number  for bodies  of s imple  
shape:  a sphere  and a plane.  F i r s t ,  let  us cons ide r  
the case  of heat  t r a n s f e r  f r o m  a sphere  (R << k), whose 
su r f ace  t e m p e r a t u r e  is  held constant  and which is sub- 
j e c t ed  to a plane sound wave. In the coord ina te  s y s t e m  

we mus t  solve  the h e a t - t r a n s f e r  equation 

( u v ) < T >  = D A T  

with  the boundary condit ions 

(2) 

T = T  O w h e n y = 0  and T = T ~ w h e n g ~ c o .  (3) 

To d e t e r m i n e  u in Eq. (2), we use the equation of 
mot ion with a l lowance for convec t ive  heat t r ans f e r  
f r o m  the heated body [6]: 

0u 
- -  + (u V) u = 
0t 

- v P  + T V 2 u - - g ~ ( T - - T o ) .  (4) 
P 

The boundary condit ions for (4) have the fo rm 

u = 0  when V = 0 .  

Since the plane sound wave c r e a t e s  in the v ic in i ty  
of the sphe re  a flow that is constant  with r e s p e c t  to 
t ime (the conf igurat ion of the s t r e a m l i n e s  can be seen 
in Fig .  la ) ,  the mot ion ve loc i ty  of the medium and the 
p r e s s u r e  can be r e p r e s e n t e d  as a sum of constant  and 
pulsat ing t e r m s :  

u = u  0 + V 1 ,  P = P o + P I .  (5) 

The ve loc i ty  and p r e s s u r e  pulsat ions  cause  the densi ty  

of the med ium and the t e m p e r a t u r e  to v a r y  with r e s p e c t  
to t ime ;  t h e r e f o r e ,  

P = P o + P ~ ,  T = ( T )  + T~, (6) 

and the r e l a t ionsh ip  between the v a r i a b l e  ve loc i ty  c o m -  
ponent and the t e m p e r a t u r e  pulsat ion beyond the l i m i t s  
of the boundary l ayer  (y >> 6 = (27/o~) l/z) can be wr i t ten  

[71 as 

T 1 

We use the method d e s c r i b e d  in [8] to solve the flow 
equation (4). Then, omi t t ing  the i n t e r m e d i a t e  t r a n s -  
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formations, which are described in detail in [8], we 

can show that (4) becomes 

(u0V) Uo - -  ~ V 2 Uo = 

-- vP~ g ~ ( < T ) - - T o ) - - < ( V ~ v ) V , } ,  (8) 
90 

where V t (for u0 << e) can be found by solving the sys -  
t em of equations of motion, continuity, and state in the 
first (acoustic) approximation, 

0 Vl .-~ __ _V P1 + 7A VI, 
at pc 

0 p~_ + PoV V1 = 0, 
at 

P1 = Pl c 2, (9) 

under  the boundary  condi t ions  y = 0 and Vix = Vly = 0. 
The solution of system (9) has the form [9] 

Ytx  = 

= vos, o cos 

{To V~y=--VocosO Y c o s c o t + ~ - o  x 

F 

=4 
(lO) 

This solut ion is  val id when 

do >> 1 and V~176 >>1. (11) 
6 y 

Equation (8) is the equation of motion of the medium 
under the influence of two forces: a force of acoustic 

origin <P0(ViV)VI} and alifting force p0/9 g( (T} - To) due 
to the presence of a temperature difference. Such flows 

are called thermoaeoustic [I]. Since finding the veloc- 
ity and configuration of such flows involves great theo- 
retical difficulties, we shall consider the action of 

high-intensity sound when 

g}((T)--To)<< < (V~v)V~). (12) 

Then, (8) takes the form 

(u0v)uo__yku0 _ vP. ( (Vi'v) V I ) . (13) 
9o 

This equation describes the behavior of the acoustic 
flows in the absence of natural convection (Fig. la) and 

i ts  solut ion when (u0V)u0 << TAu0, which is equivalent  to 

u~ ~4 1. (14) 
Y 

It is known [9] that 

3 V2 sin 20 x 
u0~ ---- 2 o R 

[11 6 \ 8 ] j  
(15) 

Then, the tangential component of the flow velocity 
outside of the boundary layer can be written as 

3 V~ sin 20. 
u~ 2 mR t16) 

Here it  mus t  be noted that l imi ta t ion  (12) on the ampl i -  
tude of the f luctuat ing veloci ty  is s t r onge r  than (11). 
There fo re ,  a s s u m i n g  that for a sphere  [9] 

(Vlv) Vl ~ V2~ R ' (17) 

on the basis of (12) and (14), using (16) and (17), we 

can write 

[f~gR(To--T=)] u2 << Vo< < [y R~oP] u4 . (18) 

If we substitute (16) and (15) into (12) and average 
with respect to time, we obtain the heat-transfer 
equation as 

( u 0 v ) < T ) +  <(V 1V) T , )  = D v  2 < T > .  (19) 

We specify the boundary  condit ions for this equation 
on the sur face  do + 6. If 5 << do, the t e mpe r a t u r e  at the 
surface do+ 6 will equal the temperature of the sphere, 
since the time in which the temperature of the surface 
do + 6 becomes equal to To 0" = 5Z/D) is considerablyless 
than the characteristic time of the process. There- 

fore, when 

- - - > > - - ,  (20) 
u0 D 

it does not m a t t e r  where the boundary  condit ions a re  
ass igned:  at y = 0 or y = 6. Thus,  the p rob lem of f ind- 
ing the t e m p e r a t u r e  d i s t r ibu t ion  of the medium reduces  
to solving Eq. (19) under  the boundary  condit ions 

T =  Towheng = 6 and T = T ,  when 9 -+ co. (21) 

We solve (19) in two s teps .  F i r s t ,  le t  us cons ide r  the 
ease in which the t e m p e r a t u r e  of the medium is de- 
t e r m i n e d  only by the veloci ty  of the cons tant  (acoustic) 
flow, i . e . ,  (u~V)(T> >> <(VxV)T,>. Then, (19)becomes  

( U o V ) < T )  = D A ( T ) .  (22) 

With the standard Mises substitution [i0] 

Vo --- O ~ [(R + y) sin 0I -I, 
Or 

O~ 
V,= ~ -  [(R + gysin01-1 (23) 

it reduces to 

a ( T >  I a ' < T )  - - ~ - ] ~  = DRauo~ sin s 0 0 43 (24) 

If we subst i tu te  (16) into (24) and in t roduce the new 
va r i ab l e  

a v~ j' 
a =  ~ DR ~-o  sin 20 sin sOdO= 

__ 3DRW~ sin40 + B1, (25) 
4o 
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where  B 1 is  the cons tant  of i n t eg ra t ion ,  we a r r i v e  at  

O<T O2<T> 
Oa O$ ~ 

- - ,  (26) 

with the boundary  condi t ions  

T=T.~ when ~2--. cr T = T  o when ~p=O, 

a - - a o : B  1 when 0--*.0. (27) 

The solution of Eq. (26) has the form 

Then 

<T> = 

~/2 

--  V-~2 (T~ - -  To) j '  exp (-- z ~) dz -}- Bo 

o 

(28) 

O<T> 
Oy 

[ _ 1 (T~--To) exp 
V_~_  ao 4 ( a - -  ao) ~ (29) 

Y 

From (23), ,~ = S Ve rsin B dy; therefore, finally (r = 
0 

= y +  R) 

O < T )  / 4V3V~176 
o ~  : ~ o  = ~ V ~  V ~  (30) 

Since 2R i s  the  c h a r a c t e r i s t i c  d imens ion  of the s p h e r e ,  
if  we subs t i tu te  (30) into (1) we obtain 

2"41/~ (31) 
Nu~ V co m 

Now let us consider the second case, in which the 
first  term on the left-hand side of Eq. (19) is small in 
comparison with the second, i . e . ,  the temperature is 
determined chiefly by the pulsating component of the 
flow velocity. In this case, (19) is transformed to 

< (VIv)TI > = D v  ~ < T >. (32) 

If the sphe re  is  hea ted  un i fo rmly  and Pe = u0/ /D >> 
>> 1, then 0<T) /0x  << 0<T>/0y, s ince  the t e m p e r a t u r e  
v a r i e s  g r e a t e s t  r a d i a l l y .  T h e r e f o r e ,  (32) can be w r i t -  
ten as  

O~<T> 
( (Vl V) 7"1 > = D - -  (33) 

0p 

Subst i tu t ing (10) into (7), we obta in  

T I ~ - ~ - -  sin cot ~ x 

xVocos0 0 < T >  (34) 
Oy 

and 

oT1 OT1 < v1. ~ + v~x ~ > = 

6V0Usin~0 0 < T >  (35) 
= - -  4 R  ~ O y  

Hence,  (33) b e c o m e s  

0 ~ ( T > V026 sin s 0 
D ~ q- 4(0 R ~ 

If we i n t e g r a t e  (36), we obtain 

O<T> 
Oy = 0 .  (36) 

<T> =(To--T~,)exp(--• (37) 

where  ~ = V~5 sin z O/4wDR 2. Then 

o<7">) Vo2 8 stn, O(ro- T~) 
Oy / u=o = 4(o DR ~ 

and, subs t i tu t ing  (38) into (1), we o b t a i n  

, ( 3 s )  

~y~ 
NUa = '  4R o) D " (39) 

The o v e r - a l l  h e a t - t r a n s f e r  coef f ic ien t ,  which i s  d e t e r -  
mined  by the effect  of the acous t i c  f l ows  Nu a and pul-  
sa t ions  Nu~, i s  equal  to the sum of these  componen t s ,  

Nu~ = Nu~ + Nu~, (40) 

s ince  the h e a t - t r a n s f e r  equation is  l i n e a r  in (T>. 
Le t  us e s t i m a t e  the cont r ibut ion  to the h e a t - t r a n s -  

f e r  p r o c e s s  made  by each  of t he se  t e r m s :  

(41) 
Nu~ 6 V o V o ~/ y -  " 

In the de r iva t ion  of the e x p r e s s i o n s  for  the hea t -  
t r a n s f e r  coef f icent  i t  was a s s u m e d  that  V 0 could be 
chosen  within the l i m i t s  def ined by condi t ion (18), while  
the r a d i u s  of the s p h e r e  was bounded by the r e f l ec t i ons  

6 <.< R < - - ,  (42) 
8 

and, in addition, the requirement A/R < 1 had to be 
met ,  which can be written as 

0) > V ~  (43) 
R 

and whieh i m p o s e s  a l im i t a t i on  on the p o s s i b l e  l o w e r -  
ing of the working f requency .  Cons ide r ing  (43), t h e r e -  
fo re ,  i t  i s  obvious that  under  the chosen  condi t ions  
q >> 1, i . e . ,  the h e a t - t r a n s f e r  p r o c e s s  in an acous t i c  
f i e ld  i s  d e t e r m i n e d  ch ie f ly  by the acous t i c  f lows and 
i s  independent  of the pu l sa t ion  t e r m ,  al though i t  i s  
na tu ra l  that ,  s ince  the a c ous t i c - f l ow  v e l o c i t y  (16) i s  
p r o p o r t i o n a l  to the k ine t i c  e n e r g y  of the sound wave,  
hea t  t r a n s f e r  i s  i n c r e a s e d  when the ampl i tude  of the 
f luc tuat ing  ve loc i ty  (31) i s  i n c r e a s e d .  

It should be noted that  f o r m u l a  (31) i s  va l id  not 
only  for  a s p h e r e  but a l so  for  a cy l i nde r ,  s ince  the 
e x p r e s s i o n s  for  flow ve loc i ty  nea r  a sphe re  and nea r  
a c y l i n d e r  (outs ide the boundary  l aye r )  a r e  iden t i ca l  
[11] and a r e  wr i t t en  in the f o r m  of (16). This  a l lows  
us to use  e x p r e s s i o n  (31) to c o m p a r e  the c a l c u l a t ed  
va lues  of the d i m e n s i o n l e s s  h e a t - t r a n s f e r  coef f ic ien t  
with the e x p e r i m e n t a l  da ta  in [1]. 
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Heat t r a n s f e r  f rom a hor izontal  cy l inder  (do = 18.8 
ram) when it  was placed at the s tanding-wave  veloci ty  
ant inode was studied in [1]. The sound f requency  va r i ed  
f rom 1.1 to 6 kHz, and the sound p r e s s u r e  Pt = 140-  
150 dB. In Fig.  2, curve  1 co r responds  to Nu0 + Nu~, 
where Nu 0 was ca lcula ted  according to [1] and Nu~ by 
(31), while curve  2 is  the exper imen ta l  r e la t ion  ob- 
ta ined at 1.5 kHz [1]. Since fo rmula  (31) was der ived  
under  assumpt ion  (12), then, bear ing  in mind  (17), we 
can show that for the t e m p e r a t u r e  potent ial  To - Too = 
= 110 ~ C, for which the expe r imen ta l  data a re  given,  
(31) is val id  when Pl -> 2 ' 10 ~ ba r s  (140 dB). Compar i -  
son of curves  1 and 2 shows that for sound p r e s s u r e s  
close to the c r i t i ca l  value Per ,  the difference between 
the ca lcula ted  and exper imen ta l  values  can reach  25%, 
whereas  this  dif ference is subs tan t ia l ly  reduced when 
the sound i n t ens i ty  is  i nc reased .  

F igure  2 also shows the f requency  dependence of 
the d imens ion l e s s  h e a t - t r a n s f e r  coefficient  (curve 3) 
(P = 6,3.  103bars),  which was plotted f rom (31). The 
exper imen ta l  value (for Pl = 6" 10 ~ bars)  f rom [1] a re  
shown by points .  The graphs  show that fo rmula  (31) 

Nua+Nu o 

24, 

16 

2 3 , 5 F 

I 

8 """~" ""- Pcr 3 . . . . . . .  

Fig.  2. H e a t - t r a n s f e r  coeff icient  v e r s u s  f r equency  
and in tens i ty  for a cy l inder .  

expla ins  sa t i s f ac to r i ly  the va r i a t ion  of Nua as a func-  
t ion of the p a r a m e t e r s  of the sound field. It mus t  be 
noted that (31) differs  f rom the fo rmula  for m a s s  
t r a n s f e r  f rom a sphere  in a sound field [2] only by a 
coeff icient ,  

V 
Nuo = 1.o7 1 / ~  " <44) 

Since the mass-transfer equation is similar to the 

heat-transfer equation, and, in particular, when the 

pulsation term is negligible it has the form 

(u0v)C = D A C ,  (45) 

which is similar to Eq. (22), then solution of the mass- 

transfer problem reduces formally to solution of a sys- 
tem of equations consisting of (45) and general equa- 

tions of motion. In particular, the flow equation can 

be taken in the form of (13). Therefore, the coeffi- 

cient of mass transfer from a sphere in a sound field 

will be determined by the same expression as for 

heat transfer, i.e,, formula (31). Expression (44), 

however, which ~vas given in [2], was derived under 
the assumption that the sphere was placed in the field 

of an airstream whose velocity is determined by {16), 

i.e., the authors actually ignored the characteristics 

of the boundary layer of the acoustic flows, as a re- 

sult of which a different value of the coefficient was 

obtained. These acoustic-flow boundary-layer charac- 

eristies are taken into account in formula (31). 

f 

/ 

Fig.  3. Dis t r ibu t ion  of a force  caus ing  a flow 
nea r  a sur face .  

Now let us cons ider  the case  of m a s s  t r a n s f e r  f rom 
the walls of a channel  within which a s tanding sound 
wave has been set  up. As in the case of heat t r a n s f e r ,  
we shall  a s sume  that the m a s s  t r a n s f e r  is  chief ly af- 
fected by the acoust ic  flows, which Jn this  case  a re  of 
the Rayleigh type and whose conf igurat ion is shown in 
Fig.  lb .  The complexi ty  of the solut ion of this p rob lem 
l ies  in the fact that for Rayleigh flows the c h a r a c t e r -  
i s t ic  d imens ion  of motion is  R, and, therefore ,  when 
ire = u0R/7 >> 1, Eq. (13) is not l i nea r i zed .  In the a r e a  
of the v iscous  sub layer ,  however,  the equation can be 
I inea r ized ,  s ince u050/7 << 1. Then the equation of mo-  
t ion takes  the form 

yh u0 -- - -  vP___~0 + (y 1 V) V~ (46) 
P0 

and co r responds  to the equation of the acous t ic  flows 
caused by the force F = p0(VI~)V1. The th ickness  60 
of the v i scous  sublayer  can be defined as the d is tance  
at which F = 0. As is apparent  f rom Fig. 3, this con- 
dition is  met  when y = 45. 

NUa+N n 
NUn 

{5 

/20 /40 /50 P 

Fig.  4. Compar i son  of theore t ica l  
and expe r imen ta l  va lues  of m a s s -  
t r a n s f e r  coefficient  as a function 
of sound p r e s s u r e  {P, dB) for a 

plane at f = 286 Hz. 

The solution of (46) with the boundary conditions 

u 0 = 0 at y = 0 has the form 
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{[ uo, = -4C- sin 2kx 3 sin y q- cos y § 

! exp ( - - ~ - ) ]  exp ( - - ~ - ) - - ~ }  -Jc- +2 
+ Big 2 + B2g, 

vXk 
uov = ~ cos 2kx x 

x { I 2 s i n _ ~ _ 4 c o s  g 1 

2 5 dx 3 ~ dx 2 " (47) 

The  c o n s t a n t s  of i n t e g r a t i o n  B I and B 2 a r e  d e t e r m i n e d  
f r o m  the cond i t ion  tha t  when y = 45, U0x and U0y m u s t  
equa l  the  v e l o c i t y  c o m p o n e n t s  at  in f in i ty .  The  l a t t e r  
can  be  found e x p e r i m e n t a l l y .  A m o n g  o t h e r  t h ings ,  i t  
i s  shown in [12] tha t  fo r  5 < y < R 

u~ = 2.7 . 10 -4 V 2 sin 2kx. (48) 

T h e n  B 1 = 1.5 �9 10-4(Vi/Ta) s i n 2 k x  and Ba = - 5 . 4  �9 10 -4 x 
x (V2/5) s in  2kx.  

If we know u0 in the r a n g e  0 -< y <- R, we can  s o l v e  
(45) wi th  the  b o u n d a r y  cond i t i ons  

C = C  owhen  g = 0 ,  C = C =  w h e n g = R .  (49) 

For this, we use the integral relation [13] 

f d (C-- Co) udg = --D ~ g=O" dx 
0 

(50)  

The l e f t - h a n d  s ide  of th i s  equa t ion  can  be d e t e r m i n e d  
f r o m  the fo l lowing  iden t i t y ,  wh ich  is  v a l i d  fo r  P r  = 1: 

C - -  C O U-- U~ 
- - - .  (51) 

C ~ o -  C O u~ 

Since  fo r  g a s e s  P r  ~ 1, (51) i s  v a l i d  wi th  an a c c u r a c y  
of  1 - (Pr )  j/a, i f  we  subs t i t u t e  (51) into (50) and u s e  
(47) and (48), we obta in  

( O~y ) 4u| (Co_C~). (52) 

v=o D 

Hence, from a formula similar to (i) we find that 

u.k 6 R cos 2kx 
N G . . . . . . . . . . . . . . . .  . (53) 

D 

The v a l u e  of Nu a a v e r a g e d  o v e r  the l eng th  of the 
channe l  i s  

- -  [ ' ] Nu~ 8.. 8&ca cDLUy- l q  -2)eL- . (54) 

Since 6 = (2T/W) I/2, when L >> k/2 the dimension- 
less mass-transfer coefficient increases with an in- 
crease in frequency as ,~, which has been observed 

for large bodies [4]. On the other hand, when L << 

<< X/2, h/2kL >> 1 and Nu a is proportional to i/~, 

which has been observed in practice [5]. In the inter- 
mediate region, the frequency dependence is more 

complicated. 

The periodic variation of the local values of Nu a 

obtained in (53) is in good agreement with the experi- 

mental results of [14], where heat transfer in a pipe 

under the influence of acoustic vibrations for kL > 1 

was studied. 

Figure 4 shows the ratio of the dimensionless mass- 

transfer coefficients in an acoustic field for forced 

convection (Re = 1430) as a function of P, as calculated 

by (54) assuming 2kL << i; Nu n was calculated accord- 

ing to [13] and u~o by (48); the experimental points were 

taken from [5], in which the sublimation of naphthalene 

(D = 0.6 cma/sec) at 285 Hz when the samples (L = 2 

cm) were flush with the walls of the column was studied. 
As can be seen from Fig. 4, the theory is in good 

agreement with the experiment. 

NOTATION 

u is the velocity of.the medium; p is the density of 

the medium; P is the pressure in the medium; T is 

the kinematic viscosity; g is the acceleration of grav- 

ity; fi is the isothermal compressibility; c is the speed 

of sound; T is the temperature of the medium; <T) is 

the time-averaged temperature of the medium; T I is 

the time-varying temperature of the medium; Vi(V1x, 
V1y) is the rate Of oscillation of the medium; V0 is the 

amplitude of the oscillation rate; P0 is the mean density of 

the medium; Pl is the time-varying density of the medium; 

P0 is the mean pressure in the medium; Pl is the variable 

pressure in the medium ; co is the cyclic frequency of the 

sound oscillations ; u0(u0x, U0y) is the acoustic flow veloc- 
ity; D is the thermal diffusivity (in diffusion equations, it 

is the diffusion coefficient); C is the concentration of 

the substance in the medium; T O and Co are, respec- 
tively, the temperature and concentration of the sub- 

stance at the surface of the body; Too and Coo are, re- 

spectively, the temperature and concentration of the 

substance at a point remote from the surface of the 
body; V1~o is the oscillation rate of the medium remote 

from the surface of the body; u~o is the acoustic flow 

velocity remote from the surface of the body; X is the 

acoustic wavelength; k is the wave number; A is the 

displacement amplitude; do is the diameter of the body; 

R is its radius; I is the characteristic dimension of 
the motion; 6 is the thickness of the dynamic boundary 
layer; L is the sample length; NU~ is the Nusselt num- 
ber, a function of the acoustic flow; Nu" is the Nusselt a 
number, a function of the oscillation rate; Nu 0 is the 
Nusselt number in free convection; Nun is the Nusselt 
number in forced convection; () signifies averaging 

with respect to time. 
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